1. Simplify the following:
a.
$$\frac{b^{p+3q}}{b^q \cdot b^{2q}}$$
 (Write with a single base of b)

b.
$$5^{-2} + 7^{-2}$$

c. $\sqrt[3]{\sqrt{x} \cdot \sqrt[4]{x}}$ (use rational exponents to simplify)

- 2. Factor the following completely: a. $150x^2 + 290x + 120$
- b. $12x^2 6y 9x + 8xy$
- c. $4(x-b)^4 36(x-b)^2$
- $d. \qquad 4a^3x^2 9a^3y^2 4b^3x^2 + 9b^3y^2$
- 3. Simplify: |2x+3| + |x-4| given that 0 < x < 2.

4. Rationalize the denominator:
$$\frac{\sqrt{x} - 2\sqrt{y}}{\sqrt{x} + 2\sqrt{y}}$$

Solve the following equations for x:
$$1 x 5 x 8$$

$$\frac{1}{x-3} + \frac{x}{x+4} = \frac{3x-6}{x^2 + x - 12}$$

b. Solve for x:
$$y = \frac{2x+3}{3x-1}$$

c.
$$\frac{x+2p}{2q-x} + \frac{x-2p}{2q+x} - \frac{4pq}{4q^2 - x^2} = 0$$

6. Simplify:
$$\frac{\frac{3xy}{x-y} + \frac{2xy}{x+y}}{\frac{xy}{x^2-y^2}}$$

7. a. Find the distance between the two points: $\left(2\frac{1}{2},3\right)$ and (5, 7) b. Find the midpoint of (1, 4) and (a, a²)

8. Find the x and y intercepts for the equation $y = 2x^2 - 5x - 7$

P-test #2

1. Determine the equation of the line with x - intercept (2, 0) and y - intercept $\left(0, \frac{4}{3}\right)$ 2. Find the center and radius of the following: $x^{2} + y^{2} - 5x + 6y = \frac{3}{4}$

3. Solve the following for x and write answer in interval notation: $\left|\frac{3x-2}{4}\right| < 3$

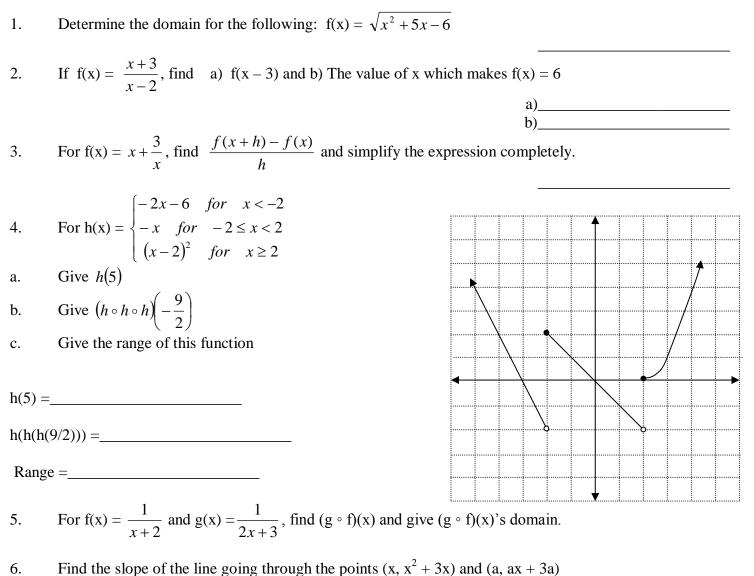
4. Find the quadratic of the form $x^2 + bx + c = 0$ given the roots of the quadratic are $\frac{-1 \pm \sqrt{3}}{2}$

5. Solve for x: a.
$$(x-5)(x-3) = -1$$

b.
$$x = \sqrt{3x+7} - 3$$

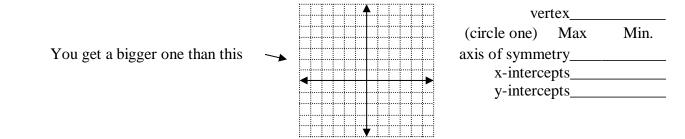
c. $x^{\frac{4}{3}} - 5x^{\frac{2}{3}} + 4 = 0$

6. Determine all real values of k such that the equation $2x^2 - 3x + k = 0$ has 2 distinct real solutions. Write the answer in interval notation.


7. a.. Solve for x and write the solutions in interval notation: $y^3 - 3y^2 - 4y + 12 \ge 0$

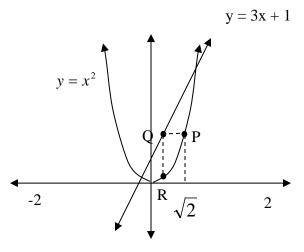
b. $\frac{2x+1}{x-1} - \frac{2}{x-3} \le 1$ (Be careful with the algebra)

5.


a.

P-Test #3

- 5. Find the slope of the line going through the points (x, x + 5x) and (a, a)
- 7. Find the inverse function for $f(x) = \frac{2x-5}{x+4}$


8. Find the vertex; determine if it is a max. or min. point, find the axis of symmetry and the intercepts of the following equation, then graph: $y = -2(x-3)^2 + 3$

9. Find the vertex, determine if it is a max. or min. point, find the axis of symmetry and the intercepts of the following:

 $y = \frac{2}{3}x^2 + 4 \cdot x$

10. Determine the exact coordinates of the points P, Q and R. Assume each dashed line is parallel to one of the coordinate axes.

P-Test #4

1. Graph the following equation: $y = -x^{3}(x-1)(x+2)^{2}$ (the graph is from -6 to +6 for both axies) Be accurate.

2. Sketch the graph of the function: $y = \frac{x^2 - 4}{x^2 - x}$. Be sure to clearly show the following: all vertical asymptotes, horizontal asymptotes, x intercepts, and any point where the graph of the function crosses its horizontal asymptote.

4. For $y = 3^{x+1} + 1$, Give the Domain, Range, intercepts, asymptotes.

- 5. Solve: $3^{1-2y} = \sqrt{3}$
- 6. For $y = \log_3(x-2) + 1$, Give the Domain, Range, intercepts, asymptotes.
- 7. Solve for t: $e^{2t+3} = 10$

8. Rewrite: $\ln \frac{(x+2)^2}{\sqrt[4]{x(x-2)^3}}$ as the sum of logarithms with no products, quotients of powers.

- 9. Solve: $\log_3 108 + \log_3(3/4)$
- 10. Evaluate the expressions in terms of A, B, and C given that: $\log_{b} 2 = A$ $\log_{b} 3 = B$ $\log_{b} 5 = C$

a.
$$\log_b\left(\frac{15}{8}\right)$$

b. $\log_{2b} 10$ (Hint: use the change of base formula: $\log_a x = \frac{\log_c x}{\log_c a}$)

- 11. Solve for x:
- a. $e^{2x} 2e^x 3 = 0$
- b. $\log(x+3) + \log(x-6) = 1$
- c. $2^{5x} = 3^x (5^{x+3})$

P-Test #5

1. Compute the following: a. (3+4i)(5-3i) c. (4-i)(4+i)b. $\frac{2+3i}{3-4i}$ d. i^{51}

2. Determine the multiplicity of the polynomial $f(x) = x^4 - x^3 - 9x^2 + 16x - 4$ given that (x - 2) is a factor of f(x).

- 3. Find the polynomial with the following characteristics:
- a. Degree 3: roots 3 + 4i, -2

b. Degree 3: roots: 2, -2, 3, then find a_n for that polynomial given the graph passes through the point (1, 3). General polynomial: ______ $a_n =$ _____

- 4. Find all the roots of $x^3 8x^2 + 6x + 52$ given that 5 + i is a root.
- 5. Find the cubic polynomial with integer coefficients and roots -2, $\frac{1}{3}$, $-\frac{4}{3}$. The leading coefficient should be as small as possible.
- 6. Find all solutions for the system of equations:
 - a. $\frac{2}{x^2} + \frac{3}{y^2} = 11$ $\frac{-4}{x^2} + \frac{1}{y^2} = -15$

b. $y = -\sqrt{x}$ $(x - 3)^2 + y^2 = 4$

- 7. Give the first 4 terms of: $a_n = (-1)^n (2n 1)$
- 8. Give the first 5 terms of: $b_1 = 2$, $b_n = \sqrt{b_{n-1}^2 + 3}$
- 9. Find the sum: $\sum_{k=1}^{4} k(k+2)$
- 10. Find the common difference in an arithmetic sequence in which $a_{15} a_7 = -1$
- 11. Find the sum for: $\sum_{n=1}^{100} (2n-1)$

12. Determine the sum of the infinite geometric series: $\sum_{1}^{\infty} \frac{9}{10}$

P-Test #6

Problems
see Homework
see Homework
see Homework

Check answers in the back of the book.

Answers: P-test #1

1a.	b ^p	5a.	4	
1b.	$\frac{74}{1225}$	5b.	$x = \frac{y+3}{3y-2}$	
1c.	x ^{1/4}	5c.	<u>pq</u>	
2a.	10(3x + 4)(5x + 3)	50.	<i>p</i> + <i>q</i>	
2b.	(4x - 3)(3x + 2y)	6.	5x+y	
2c.	$4(x-b)^2(x-b+3)(x-b-3)$	7a.	$\sqrt{89}$	
2d.	$(2x + 3y)(2x - 3y)(a - b)(a^2 + ab + b^2)$		2	
3.	x + 7	7b.	$\left(\frac{a-1}{2},\frac{a^2-4}{2}\right)$	
4.	$\frac{x - 4\sqrt{xy} + 4y}{x - 4y}$	8.	y-intercept: (0, -7) x-intercepts: (1, 0), (7/3, 0)	
	Answers P-test #2			

 $y = -\frac{2}{3}x + \frac{4}{5}$ 5. a. 1. 4 b. - 2, - 1 Center: $\left(\frac{5}{2}, -3\right)$ 2. c. ±1, ±8 Radius: 4 6. $\left(-\infty,\frac{9}{8}\right)$ $\left(-\frac{10}{3},\frac{5}{3}\right)$ 3. a. [- 2, 2] U [3, ∞) 7. 4. $x^2 + x - 1/2 = 0$ b. [-1, 1) U (3, 4]

> Answers: P-test #3 1. $(-\infty, -6] U [1, \infty)$

2a.
$$\frac{x}{x-5}$$

2b. 3
3. $\frac{x(x+h)+3}{x(x+h)}$ or $\frac{x^2+xh+3}{x(x+h)}$ or $1+\frac{3}{x(x+h)}$ D
4a. 9
4b. -1
7. f⁻¹
8. vertex: (3, 3) (circle one) Max Min.

-2, ∞)

$$(g \circ f)(x) = \frac{x+2}{3x+8}$$

Domain of $(g \circ f)(x)$: $\mathbb{R}, x \neq -\frac{8}{3}$ or -2

+3

$$f^{-1}(x) = \frac{-4x-5}{x-2}$$

axis of symmetry: x = 3x-intercepts: $\left\{-3 \pm \frac{\sqrt{6}}{2}\right\}$ y-intercept: -15

(Graph using all these points)(Hint: it looks like a parabola)

vertex: (-3, -6) axis of symmetry: x = -39. (circle one) Max Min. x-intercepts: $\{0, -6\}$ y-intercepts: (0, 0)

10.
$$P = (\sqrt{2}, 2)$$

 $Q = (\frac{1}{3}, 2)$
 $R = (\frac{1}{3}, \frac{1}{9})$

Answers: P-test #4

1. Will graph in class

vertical asymptotes: x = 0 and x = 1 horizontal asymptote: y = 1 x-intercepts: (0, 0)2. point where the graph of the function crosses its horizontal asymptote x = 4

Will graph in class

3.
$$f(x) = \frac{2x^2 - 6x}{(x-2)(x+3)}$$

Range: $(1, \infty)$ y – intercept: (0, 4) x – intercept: Ø Asymptote(s): y = 1 4. Domain: \mathbb{R}

Will graph in class

5. 1/4

6. Domain: $(2, \infty)$ Range; \mathbb{R} y - intercept: \emptyset x - intercept: $\left(\frac{7}{3}, 0\right)$ Asymptote(s): x = 2

Will graph in class

$$10 = 3/2$$
 $10b.$
 $\frac{A+C}{A+1}$

 8.
 $2\ln(x+2) - \frac{1}{4}\ln(x-3) - 3\ln(x-2)$
 11a.
 $\ln 3$

 9.
 4
 11b.
 7

 9.
 4
 11c.
 $\frac{3ln5}{5ln2-ln3+ln5}$

Answers: P-test #5

1a.	27+11 <i>i</i>	5.	$9x^3 - 9x^2 - 22x + 8$
1b.	$-rac{6}{25}+rac{17}{25}i$	ба.	$\left(\frac{1}{2},1\right)\left(\frac{1}{2},-1\right)\left(-\frac{1}{2},1\right)\left(-\frac{1}{2},-1\right)$
1c.	17		
1d.		6b.	$\left(\frac{5+\sqrt{5}}{2}, -\sqrt{\frac{5+\sqrt{5}}{2}}\right)\left(\frac{5-\sqrt{5}}{2}, -\sqrt{\frac{5-\sqrt{5}}{2}}\right)$
2.	2	7.	-1, 3, -5, 7
3a.	$x^{3} - 4x^{2} + 13x + 50$	8.	$2,\sqrt{7},\sqrt{10},\sqrt{13},\sqrt{16}$
3b.	$\frac{1}{2}x^3 - \frac{3}{2}x^2 - 2x + 12$	9.	50
	$a_n = \frac{1}{2}$	10.	$-\frac{1}{8}$
	2	11.	10,000
4.	5 ±1, -2	12.	10